Base Metal Co-Fired Multilayer Piezoelectrics

نویسندگان

  • Lisheng Gao
  • Hanzheng Guo
  • Shujun Zhang
  • Clive A. Randall
  • Delbert Tesar
چکیده

Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ltcc Interconnect Modeling by Support Vector Regression

In this paper, we introduce a new method: support vector regression (SVR) method to modeling low temperature co-fired ceramic (LTCC) multilayer interconnect. SVR bases on structural risk minimization (SRM) principle, which leads to good generalization ability. A LTCC based stripline-to-stripline interconnect used as example to verify the proposed method. Experiment results show that the develop...

متن کامل

BGA Reliability of Multilayer Ceramic Integrated Circuit (MCIC) Devices

Multilayer ceramic integrated circuit (MCIC) devices using low temperature cofired ceramic (LTCC) technology have advantages in the wireless applications attributed to the unique RF materials’ properties and ease of multilayering leading to high Q RF devices. In this paper, the reliability of MCIC-BGA was evaluated under thermal cycling and mechanical test conditions. Two commercial metal paste...

متن کامل

Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkal...

متن کامل

Compact Hairpin Bandpass Filter with Wide Stopband and High Attenuation Using Multilayer Broadside-coupled Stripline

This paper presents a compact bandpass filter with stopband and high attenuation by using multilayer folded broadside-coupled quarter-wavelength stripline resonators in a low-temperature co-fired ceramic (LTCC) substrate. The proposed bandpass filter centered at 1.1 GHz with a fractional bandwith of 4.5 % shows the first spurious frequency at 3.8 times the center frequency. In comparison to the...

متن کامل

بررسی اثر پخت مکرر پرسلن بر مقاومت باند در دو نوع آلیاژ بیس متال (مینالوکس و وراباند 2)

The formation of oxides on the surface of the metal are proven to contribute to the formation of strong bonding. However, The base metal alloys are expected to exhibit more oxidation than high gold alloys, increase in oxide layer thickness due to repeated firing in them can reduce the bond strength. The aim of this study was to compare the effect of repeated porcelain firing on the bond strengt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016